Sunday, February 7, 2010

Mission profile

Mission profile

A rocket launching
Voyager 1 lifted off with a Titan IIIE/Centaur

Voyager 1 was originally planned as Mariner 11 of the Mariner program. From the outset, it was designed to take advantage of the then-new technique of gravity assist. Luckily, the development of interplanetary probes coincided with an alignment of the planets called the Grand Tour.

The Grand Tour was a linked series of gravity assists that, with only the minimal fuel needed for course corrections, would enable a single probe to visit all four of the solar system's gas giant planets: Jupiter, Saturn, Uranus, and Neptune.

The nearly identical Voyager 1 and Voyager 2 space probes were designed with the possibility of a Grand Tour in mind, and their launches were timed to enable the Grand Tour to be carried out if things went well. However, the two Voyagers were only funded by Congress as Jupiter-Saturn probes. At one time, the program was called the "Mariner Jupiter-Saturn" project.

Because of this remarkable planetary alignment, a Voyager-class spacecraft could visit each of the four outer planets mentioned above in just twelve years, instead of the approximately thirty years that would usually be required otherwise.

The Voyager 1 probe was launched on September 5, 1977, by the National Aeronautics and Space Administration from Cape Canaveral, Florida, aboard a Titan IIIE/Centaur carrier rocket, two weeks after its twin space probe, Voyager 2 had been launched on August 20, 1977. Despite being launched after Voyager 2, Voyager 1 was sent off on a somewhat shorter, quicker trajectory, so that it reached both Jupiter and Saturn before its sister space probe did.

For details on the Voyager space probes' identical instrument packages, see the separate article on the overall Voyager Program.

Jupiter

Voyager 1 began photographing Jupiter in January 1979. Its closest approach to Jupiter was on March 5, 1979, at a distance of about 349,000 kilometres (217,000 miles) from the planet's center. Due to the greater photographic resolution allowed by a closer approach, most observations of the moons, rings, magnetic fields, and the radiation belt environment of the Jovian system were made during the 48-hour period that bracketed the closest approach. Voyager 1 finished photographing the Jovian system in April 1979.

The two Voyager space probes made a number of important discoveries about Jupiter, its satellites, its radiation belts, and its never-before-seen planetary rings. The most surprising discovery in the Jovian system was the existence of volcanic activity on the moon Io, which had not been observed either from the ground, or by Pioneer 10 or 11.

Saturn

The gravitational assist trajectories at Jupiter were successfully carried out by both Voyagers, and the two spacecraft went on to visit Saturn and its system of moons and rings. Voyager 1's Saturnian flyby occurred in November 1980, with the closest approach on November 12, 1980, when the space probe came within 124,000 kilometers (77,000 mi) of Saturn's cloud-tops. The space probe's cameras detected complex structures in the rings of Saturn, and its remote sensing instruments studied the atmospheres of Saturn and its giant moon Titan.

Because Pioneer 11 had one year earlier detected a thick, gaseous atmosphere over Titan, the Voyager space probes' controllers at the Jet Propulsion Laboratory elected for Voyager 1 to make a close approach of Titan, and of necessity end its Grand Tour there.

Its trajectory with a close fly-by of Titan caused an extra gravitational deflection that sent Voyager 1 out of the plane of the Ecliptic, thus ending its planetary science mission. Voyager 1 could have been commanded onto a different trajectory, whereby the gravitational slingshot effect of Saturn's mass would have steered and boosted Voyager 1 out to a fly-by of Pluto. However, this plutonian option was not exercised, because the other trajectory that led to the close fly-by of Titan was decided to have more scientific value and less risk.

view of Saturn lit from the right. Saturn's globe casts its shadow over the rings to the left. Part of the lower hemisphere can be seen through the rings. Some of the spoke-like ring features are visible as bright patches.
Voyager 1 image of Saturn from 5.3 million km, four days after its closest approach.
orange coloured area at bottom right is separated from black space at upper left by diagonal series of blue bands
Layers of haze covering Saturn's satellite Titan.
Cream-colored section of a disk is separated from the black space above by a fuzzy blue curve
Titan's thick haze layer is shown in this enhanced Voyager 1 image.
black area with white partly layered fuzzy line curving from top to bottom right
Voyager 1 image of Saturn's F ring.

Saturday, February 6, 2010

craft

Subsystems

A spacecraft system comprises various subsystems, dependent upon mission profile. Spacecraft subsystems comprise the spacecraft "bus" and may include: attitude determination and control (variously called ADAC, ADC or ACS), guidance, navigation and control (GNC or GN&C), communications (Comms), command and data handling (CDH or C&DH), power (EPS), thermal control (TCS), propulsion, and structures. Attached to the bus are typically payloads.

Life support
Spacecraft intended for human spaceflight must also include a life support system for the crew.

Attitude control
A Spacecraft needs an attitude control subsystem to be correctly oriented in space and respond to external torques and forces properly. The attitude control subsystem consists of sensors and actuators, together with controlling algorithms. The attitude control subsystem permits proper pointing for the science objective, sun pointing for power to the solar arrays and earth-pointing for communications.

GNC
Guidance refers to the calculation of the commands (usually done by the CDH subsystem) needed to steer the spacecraft where it is desired to be. Navigation means determining a spacecraft's orbital elements or position. Control means adjusting the path of the spacecraft to meet mission requirements. On some missions, GNC and Attitude Control are combined into one subsystem of the spacecraft.

Command and data handling
The CDH subsystem receives commands from the communications subsystem, performs validation and decoding of the commands, and distributes the commands to the appropriate spacecraft subsystems and components. The CDH also receives housekeeping data and science data from the other spacecraft subsystems and components, and packages the data for storage on a data recorder or transmission to the ground via the communications subsystem. Other functions of the CDH include maintaining the spacecraft clock and state-of-health monitoring.

Power
Spacecraft need an electrical power generation and distribution subsystem for powering the various spacecraft subsystems. For spacecraft near the Sun, solar panels are frequently used to generate electrical power. Spacecraft designed to operate in more distant locations, for example Jupiter, might employ a Radioisotope Thermoelectric Generator (RTG) to generate electrical power. Electrical power is sent through power conditioning equipment before it passes through a power distribution unit over an electrical bus to other spacecraft components. Batteries are typically connected to the bus via a battery charge regulator, and the batteries are used to provide electrical power during periods when primary power is not available, for example when a Low Earth Orbit (LEO) spacecraft is eclipsed by the Earth.

Thermal control
Spacecraft must be engineered to withstand transit through the Earth's atmosphere and the space environment. They must operate in a vacuum with temperatures potentially ranging across hundreds of degrees Celsius as well as (if subject to reentry) in the presence of plasmas. Material requirements are such that either high melting temperature, low density materials such as Be and C-C or (possibly due to the lower thickness requirements despite its high density) W or ablative C-C composites are used. Depending on mission profile, spacecraft may also need to operate on the surface of another planetary body. The thermal control subsystem can be passive, dependent on the selection of materials with specific radiative properties. Active thermal control makes use of electrical heaters and certain actuators such as louvers to control temperature ranges of equipments within specific ranges.

A launch vehicle, like this Proton rocket, is typically used to bring a spacecraft to orbit.

Propulsion
Spacecraft may or may not have a propulsion subsystem, depending upon whether or not the mission profile calls for propulsion. The Swift spacecraft is an example of a spacecraft that does not have a propulsion subsystem. Typically though, LEO spacecraft (for example Terra (EOS AM-1) include a propulsion subsystem for altitude adjustments (called drag make-up maneuvers) and inclination adjustment maneuvers. A propulsion system is also needed for spacecraft that perform momentum management maneuvers. Components of a conventional propulsion subsystem include fuel, tankage, valves, pipes, and thrusters. The TCS interfaces with the propulsion subsystem by monitoring the temperature of those components, and by preheating tanks and thrusters in preparation for a spacecraft maneuver.

Structures
Spacecraft must be engineered to withstand launch loads imparted by the launch vehicle, and must have a point of attachment for all the other subsystems. Depending upon mission profile, the structural subsystem might need to withstand loads imparted by entry into the atmosphere of another planetary body, and landing on the surface of another planetary body.

Payload
The payload is dependent upon the mission of the spacecraft, and is typically regarded as the part of the spacecraft "that pays the bills". Typical payloads could include scientific instruments (cameras, telescopes, or particle detectors, for example), cargo, or a human crew.

Ground segment
The ground segment, though not technically part of the spacecraft, is vital to the operation of the spacecraft. Typical components of a ground segment in use during normal operations include a mission operations facility where the flight operations team conducts the operations of the spacecraft, a data processing and storage facility, ground stations to radiate signals to and receive signals from the spacecraft, and a voice and data communications network to connect all mission elements.

Launch vehicle
The launch vehicle is used to propel the spacecraft from the Earth's surface, through the atmosphere, and into an orbit, the exact orbit being dependent upon mission configuration. The launch vehicle may be expendable or reusable